Draw a Great Circle Line

Flight or sailing road along the shortest path betwixt 2 points on a globe'southward surface

Orthodromic course drawn on the globe globe.

Great-circle navigation or orthodromic navigation (related to orthodromic course; from the Greek ορθóς, right bending, and δρóμος, path) is the exercise of navigating a vessel (a transport or aircraft) along a keen circle. Such routes yield the shortest distance between two points on the globe.[i]

Course [edit]

Figure 1. The slap-up circle path betwixt (φ1, λane) and (φ2, λii).

The great circle path may be institute using spherical trigonometry; this is the spherical version of the inverse geodetic problem. If a navigator begins at P i = (φi1) and plans to travel the great circle to a point at point P ii = (φ2two) (see Fig. 1, φ is the latitude, positive due north, and λ is the longitude, positive e), the initial and final courses α1 and αtwo are given past formulas for solving a spherical triangle

tan α one = cos ϕ two sin λ 12 cos ϕ ane sin ϕ 2 sin ϕ 1 cos ϕ 2 cos λ 12 , tan α ii = cos ϕ 1 sin λ 12 cos ϕ 2 sin ϕ 1 + sin ϕ 2 cos ϕ i cos λ 12 , {\displaystyle {\brainstorm{aligned}\tan \blastoff _{1}&={\frac {\cos \phi _{2}\sin \lambda _{12}}{\cos \phi _{1}\sin \phi _{2}-\sin \phi _{1}\cos \phi _{2}\cos \lambda _{12}}},\\\tan \alpha _{two}&={\frac {\cos \phi _{1}\sin \lambda _{12}}{-\cos \phi _{2}\sin \phi _{ane}+\sin \phi _{2}\cos \phi _{1}\cos \lambda _{12}}},\\\cease{aligned}}}

where λ12 = λ2 − λ1 [notation 1] and the quadrants of α12 are determined by the signs of the numerator and denominator in the tangent formulas (e.g., using the atan2 office). The central angle between the two points, σ12, is given by

tan σ 12 = ( cos ϕ 1 sin ϕ 2 sin ϕ 1 cos ϕ 2 cos λ 12 ) two + ( cos ϕ 2 sin λ 12 ) 2 sin ϕ 1 sin ϕ two + cos ϕ one cos ϕ 2 cos λ 12 . {\displaystyle \tan \sigma _{12}={\frac {\sqrt {(\cos \phi _{ane}\sin \phi _{2}-\sin \phi _{1}\cos \phi _{2}\cos \lambda _{12})^{2}+(\cos \phi _{2}\sin \lambda _{12})^{2}}}{\sin \phi _{1}\sin \phi _{2}+\cos \phi _{1}\cos \phi _{2}\cos \lambda _{12}}}.} [note ii] [note 3]

(The numerator of this formula contains the quantities that were used to decide tanα1.) The distance along the bang-up circle volition then be s 12 =Rσ12, where R is the assumed radius of the world and σ12 is expressed in radians. Using the mean earth radius, R =R 1 ≈ 6,371 km (3,959 mi) yields results for the distance southward 12 which are within 1% of the geodesic length for the WGS84 ellipsoid; see Geodesics on an ellipsoid for details.

Finding way-points [edit]

To find the style-points, that is the positions of selected points on the great circle between P 1 and P 2, we outset extrapolate the dandy circle back to its node A, the point at which the great circle crosses the equator in the northward management: let the longitude of this indicate exist λ0 — see Fig 1. The azimuth at this point, α0, is given past

tan α 0 = sin α one cos ϕ 1 cos ii α i + sin 2 α 1 sin 2 ϕ ane . {\displaystyle \tan \blastoff _{0}={\frac {\sin \alpha _{1}\cos \phi _{1}}{\sqrt {\cos ^{2}\alpha _{ane}+\sin ^{2}\blastoff _{1}\sin ^{2}\phi _{1}}}}.} [note 4]

Let the angular distances along the peachy circle from A to P 1 and P 2 be σ01 and σ02 respectively. Then using Napier's rules nosotros accept

tan σ 01 = tan ϕ 1 cos α 1 {\displaystyle \tan \sigma _{01}={\frac {\tan \phi _{1}}{\cos \alpha _{1}}}\qquad } (If φane = 0 and αane = 12 π, use σ01 = 0).

This gives σ01, whence σ02 = σ01 + σ12.

The longitude at the node is plant from

tan λ 01 = sin α 0 sin σ 01 cos σ 01 , λ 0 = λ ane λ 01 . {\displaystyle {\begin{aligned}\tan \lambda _{01}&={\frac {\sin \blastoff _{0}\sin \sigma _{01}}{\cos \sigma _{01}}},\\\lambda _{0}&=\lambda _{1}-\lambda _{01}.\end{aligned}}}

Effigy ii. The not bad circle path between a node (an equator crossing) and an arbitrary point (φ,λ).

Finally, calculate the position and azimuth at an arbitrary bespeak, P (see Fig. 2), by the spherical version of the direct geodesic problem.[note 5] Napier'south rules requite

. ) tan ϕ = cos α 0 sin σ cos 2 σ + sin ii α 0 sin ii σ , {\displaystyle {\colour {white}.\,\qquad )}\tan \phi ={\frac {\cos \alpha _{0}\sin \sigma }{\sqrt {\cos ^{2}\sigma +\sin ^{2}\alpha _{0}\sin ^{2}\sigma }}},} [note 6]
tan ( λ λ 0 ) = sin α 0 sin σ cos σ , tan α = tan α 0 cos σ . {\displaystyle {\begin{aligned}\tan(\lambda -\lambda _{0})&={\frac {\sin \alpha _{0}\sin \sigma }{\cos \sigma }},\\\tan \alpha &={\frac {\tan \alpha _{0}}{\cos \sigma }}.\end{aligned}}}

The atan2 function should exist used to determine σ01, λ, and α. For example, to discover the midpoint of the path, substitute σ = 1ii 01 + σ02); alternatively to find the bespeak a distance d from the starting point, take σ = σ01 +d/R. Likewise, the vertex, the betoken on the dandy circumvolve with greatest latitude, is found by substituting σ = + 12 π. It may be convenient to parameterize the route in terms of the longitude using

tan ϕ = cot α 0 sin ( λ λ 0 ) . {\displaystyle \tan \phi =\cot \alpha _{0}\sin(\lambda -\lambda _{0}).} [note seven]

Latitudes at regular intervals of longitude tin can be found and the resulting positions transferred to the Mercator nautical chart allowing the great circle to be approximated by a series of rhumb lines. The path determined in this mode gives the great ellipse joining the terminate points, provided the coordinates ( ϕ , λ ) {\displaystyle (\phi ,\lambda )} are interpreted as geographic coordinates on the ellipsoid.

These formulas utilize to a spherical model of the earth. They are also used in solving for the great circumvolve on the auxiliary sphere which is a device for finding the shortest path, or geodesic, on an ellipsoid of revolution; encounter the commodity on geodesics on an ellipsoid.

Example [edit]

Compute the great circumvolve route from Valparaíso, φ1 = −33°, λone = −71.vi°, to Shanghai, φ2 = 31.4°, λtwo = 121.8°.

The formulas for course and distance give λ12 = −166.6°,[note 8] α1 = −94.41°, αii = −78.42°, and σ12 = 168.56°. Taking the earth radius to be R = 6371 km, the altitude is s 12 = 18743 km.

To compute points along the route, first detect α0 = −56.74°, σ1 = −96.76°, σtwo = 71.8°, λ01 = 98.07°, and λ0 = −169.67°. And so to compute the midpoint of the road (for example), take σ = 12 1 + σtwo) = −12.48°, and solve for φ = −6.81°, λ = −159.xviii°, and α = −57.36°.

If the geodesic is computed accurately on the WGS84 ellipsoid,[iv] the results are αi = −94.82°, αtwo = −78.29°, and south 12 = 18752 km. The midpoint of the geodesic is φ = −7.07°, λ = −159.31°, α = −57.45°.

Gnomonic chart [edit]

A directly line drawn on a gnomonic chart would be a great circle rail. When this is transferred to a Mercator chart, it becomes a curve. The positions are transferred at a convenient interval of longitude and this is plotted on the Mercator chart.

See likewise [edit]

  • Compass rose
  • Bully circle
  • Bully-circle distance
  • Swell ellipse
  • Geodesics on an ellipsoid
  • Geographical distance
  • Isoazimuthal
  • Loxodromic navigation
  • Map
    • Portolan map
  • Marine sandglass
  • Rhumb line
  • Spherical trigonometry
  • Windrose network

Notes [edit]

  1. ^ In the article on groovy-circle distances, the notation Δλ = λ12 and Δσ = σ12 is used. The notation in this commodity is needed to deal with differences between other points, e.1000., λ01.
  2. ^ A simpler formula is
    cos σ 12 = sin ϕ one sin ϕ two + cos ϕ one cos ϕ ii cos λ 12 ; {\displaystyle \cos \sigma _{12}=\sin \phi _{1}\sin \phi _{2}+\cos \phi _{1}\cos \phi _{ii}\cos \lambda _{12};}
    notwithstanding, this is less accurate if σ12 small.
  3. ^ These equations for αone212 are suitable for implementation on modern calculators and computers. For hand computations with logarithms, Delambre's analogies[two] were usually used:
    cos 1 2 ( α 2 + α 1 ) sin ane ii σ 12 = sin 1 ii ( ϕ 2 ϕ 1 ) cos 1 2 λ 12 , sin 1 2 ( α ii + α 1 ) sin 1 2 σ 12 = cos 1 2 ( ϕ ii + ϕ ane ) sin 1 2 λ 12 , cos 1 2 ( α 2 α ane ) cos 1 2 σ 12 = cos one 2 ( ϕ 2 ϕ 1 ) cos one 2 λ 12 , sin ane 2 ( α ii α 1 ) cos 1 2 σ 12 = sin 1 2 ( ϕ ii + ϕ 1 ) sin 1 2 λ 12 . {\displaystyle {\brainstorm{aligned}\cos {\tfrac {1}{two}}(\alpha _{2}+\blastoff _{one})\sin {\tfrac {ane}{2}}\sigma _{12}&=\sin {\tfrac {ane}{2}}(\phi _{2}-\phi _{ane})\cos {\tfrac {1}{2}}\lambda _{12},\\\sin {\tfrac {1}{2}}(\alpha _{two}+\alpha _{1})\sin {\tfrac {1}{2}}\sigma _{12}&=\cos {\tfrac {1}{2}}(\phi _{2}+\phi _{1})\sin {\tfrac {1}{2}}\lambda _{12},\\\cos {\tfrac {1}{2}}(\blastoff _{2}-\alpha _{ane})\cos {\tfrac {one}{ii}}\sigma _{12}&=\cos {\tfrac {1}{two}}(\phi _{two}-\phi _{one})\cos {\tfrac {1}{2}}\lambda _{12},\\\sin {\tfrac {1}{2}}(\blastoff _{ii}-\alpha _{1})\cos {\tfrac {i}{ii}}\sigma _{12}&=\sin {\tfrac {1}{2}}(\phi _{2}+\phi _{1})\sin {\tfrac {one}{two}}\lambda _{12}.\terminate{aligned}}}
    McCaw[3] refers to these equations as being in "logarithmic class", by which he means that all the trigonometric terms appear as products; this minimizes the number of table lookups required. Furthermore, the back-up in these formulas serves as a check in hand calculations. If using these equations to determine the shorter path on the great circle, it is necessary to ensure that |λ12| ≤ π (otherwise the longer path is plant).
  4. ^ A simpler formula is
    sin α 0 = sin α 1 cos ϕ ane ; {\displaystyle \sin \alpha _{0}=\sin \alpha _{1}\cos \phi _{1};}
    withal, this is less authentic α0 ≈ ± 1two π.
  5. ^ The direct geodesic problem, finding the position of P two given P 1, α1, and southward 12, can also be solved by formulas for solving a spherical triangle, as follows,
    σ 12 = s 12 / R , sin ϕ 2 = sin ϕ ane cos σ 12 + cos ϕ 1 sin σ 12 cos α i , or tan ϕ 2 = sin ϕ one cos σ 12 + cos ϕ 1 sin σ 12 cos α i ( cos ϕ 1 cos σ 12 sin ϕ ane sin σ 12 cos α 1 ) 2 + ( sin σ 12 sin α 1 ) 2 , tan λ 12 = sin σ 12 sin α i cos ϕ ane cos σ 12 sin ϕ 1 sin σ 12 cos α 1 , λ 2 = λ 1 + λ 12 , tan α two = sin α 1 cos σ 12 cos α i tan ϕ 1 sin σ 12 . {\displaystyle {\begin{aligned}\sigma _{12}&=s_{12}/R,\\\sin \phi _{2}&=\sin \phi _{1}\cos \sigma _{12}+\cos \phi _{i}\sin \sigma _{12}\cos \alpha _{1},\quad {\text{or}}\\\tan \phi _{2}&={\frac {\sin \phi _{i}\cos \sigma _{12}+\cos \phi _{1}\sin \sigma _{12}\cos \alpha _{one}}{\sqrt {(\cos \phi _{i}\cos \sigma _{12}-\sin \phi _{1}\sin \sigma _{12}\cos \blastoff _{1})^{2}+(\sin \sigma _{12}\sin \alpha _{ane})^{2}}}},\\\tan \lambda _{12}&={\frac {\sin \sigma _{12}\sin \blastoff _{one}}{\cos \phi _{1}\cos \sigma _{12}-\sin \phi _{ane}\sin \sigma _{12}\cos \alpha _{1}}},\\\lambda _{ii}&=\lambda _{1}+\lambda _{12},\\\tan \blastoff _{ii}&={\frac {\sin \alpha _{1}}{\cos \sigma _{12}\cos \alpha _{one}-\tan \phi _{1}\sin \sigma _{12}}}.\end{aligned}}}
    The solution for way-points given in the principal text is more general than this solution in that it allows mode-points at specified longitudes to be found. In addition, the solution for σ (i.east., the position of the node) is needed when finding geodesics on an ellipsoid by means of the auxiliary sphere.
  6. ^ A simpler formula is
    sin ϕ = cos α 0 sin σ ; {\displaystyle \sin \phi =\cos \alpha _{0}\sin \sigma ;}
    however, this is less authentic when φ ≈ ± one2 π
  7. ^ The post-obit is used: cos σ = cos ϕ cos ( λ λ 0 ) {\displaystyle \cos \sigma =\cos \phi \cos(\lambda -\lambda _{0})}
  8. ^ λ12 is reduced to the range [−180°, 180°] by adding or subtracting 360° every bit necessary

References [edit]

  1. ^ Adam Weintrit; Tomasz Neumann (7 June 2011). Methods and Algorithms in Navigation: Marine Navigation and Condom of Bounding main Transportation. CRC Press. pp. 139–. ISBN978-0-415-69114-7.
  2. ^ Todhunter, I. (1871). Spherical Trigonometry (third ed.). MacMillan. p. 26.
  3. ^ McCaw, K. T. (1932). "Long lines on the World". Empire Survey Review. i (6): 259–263. doi:ten.1179/sre.1932.i.vi.259.
  4. ^ Karney, C. F. F. (2013). "Algorithms for geodesics". Journal of Geodesy. 87 (i): 43–55. doi:10.1007/s00190-012-0578-z.

External links [edit]

  • Neat Circumvolve – from MathWorld Great Circle clarification, figures, and equations. Mathworld, Wolfram Enquiry, Inc. c1999
  • Smashing Circle Mapper Interactive tool for plotting great circumvolve routes.
  • Peachy Circumvolve Calculator deriving (initial) course and distance between two points.
  • Groovy Circle Distance Graphical tool for drawing peachy circles over maps. Also shows distance and azimuth in a table.
  • Google assist program for orthodromic navigation

funkalisome.blogspot.com

Source: https://en.wikipedia.org/wiki/Great-circle_navigation

0 Response to "Draw a Great Circle Line"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel